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Abstract

The practicality of model predictive control (MPC) is partially limited by the ability to solve optimization problems in real time.
This requirement limits the viability of MPC as a control strategy for large scale processes. One strategy for improving the com-
putational performance is to formulate MPC using a linear program. While the linear programming formulation seems appealing

from a numerical standpoint, the controller does not necessarily yield good closed-loop performance. In this work, we explore MPC
with an l1 performance criterion. We demonstrate how the non-smoothness of the objective function may yield either dead-beat or
idle control performance. # 2000 IFAC. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Model predictive control (MPC) is an optimization
based strategy that uses a plant model to predict the
e�ect of potential control action on the evolving state of
the plant. At each time step, an open-loop optimal con-
trol problem is solved and the input pro®le is injected
into the plant until a new measurement becomes avail-
able. The updated plant information is used to formulate
and solve a new open-loop optimal control problem.
The MPC methodology is appealing to the practi-

tioner, because input and state constraints are explicitly
accounted for in the controller. A practical dis-
advantage is the computational cost, which tends to
limit MPC applications to linear processes with rela-
tively slow dynamics. For such problems, the optimal
control problem to be solved at each stage of MPC is a
convex program. The necessity to solve the optimization
problem in real time is especially troublesome for large-
scale processes. While e�cient software exists for the
solution of convex programs, signi®cant improvements
are obtained by exploiting the structure of the MPC
subproblem.
Traditionally model predictive control has been for-

mulated using a quadratic criterion. Part of the popu-
larity of the quadratic criterion from a theoretical
standpoint is due to its mathematical convenience.

From a numerical standpoint, the quadratic criterion is
popular, because the resulting optimization can be cast
as a quadratic program. For the unconstrained case, the
linear quadratic optimal control problem is solved e�-
ciently using dynamic programming. This solution
technique has the desirable property that the computa-
tional cost scales linearly in the horizon length N as
opposed to cubically for the general least squares solu-
tion. While the addition of constraints negates the pos-
sibility of a general analytic solution to the optimal
control problem, the quadratic program may be struc-
tured in an analogous manner to the unconstrained
problem, yielding linear growth in the horizon length N.
Approaches to structuring the optimal control problem
with a linear quadratic objective utilizing sparse matrix
methods are available in the literature [2,18,21].
Recently Dave and co-workers [7] have advocated the

use of an l1=l1 norm as a performance criterion for
MPC. One motivation is that the resulting optimal
control problem is cast as a linear program. The solu-
tion of a linear program is less computationally
demanding than the corresponding solution of a quad-
ratic program of the same size and complexity, so it may
be preferable to formulate MPC as a linear program.
The concept of using linear programming is not new
and has been considered by many authors in optimal
control (e.g. [16,22]) and in MPC (e.g. [1,3±
6,10,12,14,17]). A review of some MPC research with
non-quadratic objectives can be found in the paper by
Garcia and co-workers [9]. The main theoretical objec-
tion to linear programming formulations is that analytic
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solutions are generally unavailable due to the non-
smoothness of the objective function. The non-smooth-
ness is one of the prime reasons why the analysis of the
stability for linear programming formulations has been
lacking. Notable exceptions include the works of Keer-
thi and Gilbert [13], who use an endpoint constraint,
Genceli and Nikolaou [10], who consider ®nite impulse
response models, and Shamma and Xiong [20], who
provide a numerical test whether a given horizon is suf-
®ciently long to guarantee stability for unconstrained
MPC.
In this paper we examine linear programming for-

mulations of MPC. We begin our discussion by pre-
senting in Section 2 a stabilizing formulation of MPC
with a general lp criterion. In Section 3 we analyze the
qualitative properties of MPC with an l1 criterion.
Unlike MPC with a quadratic criterion, the choice of
the tuning parameters for the l1 formulation may result
in appreciably di�erent closed-loop performance. In
particular, we demonstrate how the non-smoothness of
the objective may yield either dead-beat or idle control
performance.

2. Stabilizing MPC with lp criterion

Consider the regulation following linear discrete-time
representation of the plant

xk�1 � Axk � Buk; k50; �1a�

yk � Cxk �1b�

where xk 2 Rn, uk 2 Rm, and yk 2 Rq. We formulate the
regulator as the feedback law � x̂j

ÿ �
that generates the

sequence ukf g1k�0, where � x̂j
ÿ ���u0, that minimizes the

in®nite horizon objective function

� x̂k� � �
X1
k�0
k Ruk k p̂� k Qyk kp; �2�

subject to Eq. 1(a and b), the initial condition x0 � x̂j,
and the constraints

umin4Duk4umax; �3a�

ÿ�u4�uk4�u; �3b�

ymin4yk4ymax; �3c�

where

k x kp ��
Xn
i�1
jx i� �jp

 !1=p

and x�i� denotes the ith entry of the vector x. Common
examples of lp norms are the sum norm (l1 norm)

k x k1 �� jx 1� �j � � � � � jx n� �j

and the max norm (l1 norm)

k x k1 �� max jx 1� �j; � � � ; jx n� �j� 	
:

The vector x̂j denotes the current state estimate of the
plant at time index j. By suitably adjusting the origin,
the regulator can account for target tracking and dis-
turbance rejection [15]. We make the following assump-
tions: (a) (A;B) is stabilizable and (C;A) is detectable;
(b) Q and R are diagonal matrices with positive ele-
ments; and (c) the origin (uk, xk� � 0 is contained within
the interior of the feasible region Eq. 3(a±c). If a feasible
solution exists, then the origin is an asymptotically
stable ®xed point for the feedback controller [13].
With the notable exceptions discussed in Section 3,

analytic solutions to Eq. (2) are generally unavailable,
because the lp norm has a kink at the origin (see Fig. 1).
To circumvent the computational barrier imposed by
the in®nite horizon calculation, we employ a stable
®nite horizon approximation. Our method is analogous
to the technique employed by Rawlings and Muske [19]
for a quadratic criterion. The basic strategy is to con-
sider only a ®nite number of decision variables, so that
the in®nite horizon problem reduces to a ®nite dimen-
sional mathematical program.

Fig. 1. Geometric interpretation of cost functions.
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We transform the in®nite horizon problem to a ®nite
horizon problem with a terminal state penalty by con-
sidering the free evolution of only the stable modes on
the in®nite horizon. We obtain the transformation using
the following terminal penalty

V x� � �
X1
k�0

QCAk
s x



 


p
;

where As is the restriction of A to the stable subspace of
A. For the majority of systems an analytic expression
for V x� � is unavailable. One simple strategy to generate
a stable approximation for V x� � is to assume that the
non-zero eigenvalues of As are nondefective. This
assumption allows us to upper bound the sum with a
Lyapunov function. Consider the Jordan decomposition

As � S
� 0
0 Jn0 0� �

� �
Sÿ1;

where the diagonal matrix � contains the non-zero
eigenvalues of As and n0 is the algebraic multiplicity of
the zero eigenvalue. Because the Jordan block Jn0 0� � is
nilpotent, we have

An
s � S�S0� � �n 0

0 0

� �
Sÿ1
ÿ �

�

Sÿ1
ÿ �

0

� �
; �4a�

� S��n Sÿ1
ÿ �

�
; �4b�

for all n5n0. If we consider the coordinate transforma-
tion z � Sÿ1

ÿ �
�
x, we generate the following upper

bound

V x� � �
Xn0ÿ1
k�0

QCAkx


 



p
��T zj j;

where jzj is a vector whose entries are the absolute value
of the associated entries of z and

� j� � �
X1
k�n0

QCS��kej


 



p
;

where the vector ej is the unit vector whose jth entry is 1.
The validity of this bound follows directly from the
subadditivity of norms:

X1
k�n0

QCAk
s x



 


p
�

X1
k�n0

QCS��k
Sÿ1� ��x




 



p
�

X1
k�n0

QCS��k z 1� �e1 � � � � � z nÿn0� �enÿn0
ÿ �

 



p

�
X1
k�n0

Xnÿn0
j�1

z j� ��� �� QCS��kej


 



p
� �T zj j:

Lemma 2.1. V x� �5 k QCx kp �V Asx� �:

Proof. It follows from Eq. (4a) that Sÿ1
ÿ �

�
Asx � �z.

Hence, we have

V Asx� � ÿ V x� � � QCS��n0z


 



p
��T �zj j

ÿ QCx


 



p
��T zj j

� �
:

Expanding �Tz, we generate the follow inequality.

�T xj j �
Xnÿn0
j�1

zj
�� ��QCS��n

0ej kp �

zj
�� ��X1

k�n0
k QCS��k�ej kp;

5 k QCS��n0z kp �X1
k�n0

Xnÿn0
j�1

� j� �z j� ��� �� k QCS��kej kp;

� k QCS��n0z kp ��T �zj j:

Hence the lemma follows.
We formulate the ®nite horizon regulator as the solu-

tion to

��N x̂k� � � min
uk;xk

XNÿ1
k�0

Ruk


 



p
� Qyk


 



p
�V xN� �; �5�

subject to Eq. 1(a and b), the initial condition x0 � x̂j,
Eq. 3(a±c), and

FTxN � 0 �6�

where the columns of F span the orthogonal comple-
ment of the stable subspace of A. An ordered Schur
decomposition of A yields an orthogonal representation
of F. In the absence of the constraints Eq. 3(a±c),
choosing N5n is su�cient to guarantee feasibility. With
the presence of inequality constraints, feasibility is
obtained for stable systems if N is su�ciently large such
that

xN 2 O1 �7�
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where the set O1 is positive invariant and contained
within the feasible region speci®ed by Eq. 3(a±c).
Details concerning the properties and construction of
O1 are available in the work of Gilbert and Tan [11].
For unstable systems, we also require that the state x̂j is
contained in the set of constrained stabilizable states
and N is su�ciently large such that Eq. (6) is feasible.

Proposition 2.2. If a feasible solution exists, then the ori-
gin is an asymptotically stable ®xed point for the closed-
loop system.

Proof. Stability follows from the continuity of ��N. To
demonstrate convergence, let

ukjk; � � � ; uk�Nÿ1jk
� 	
denote the minimizing sequence at time index k. Since
the sequence

uk�1jk; � � � ; uk�Njk; 0
� 	
is also admissible at time k� 1, we have from Lemma
2.1 that

��N x̂k� � ÿ�N x̂k�1jk
ÿ �

5 Rukjk


 



p
� Qykjk


 



p

� �
:

The sequence ��N xk� �
� 	1

k�0 is convergent, because it is
nonincreasing and bounded below. Hence,

Rukjk


 



p
� Qykjk


 



p

� �
! 0

as k ! 1. Because (C, A) is detectable, we have
xk ! 0. Therefore, the regulator is asymptotically
stable as claimed.

2.1. Linear programming formulations

With either an l1 or l1 criterion, we may transform
the optimal control problem to a linear program by
introducing auxiliary variables. We formulate (5) with
an l1 criterion as the following linear program

�N x̂j
ÿ � � min

xk;uk;�k;�k;
k;zN

Xnÿ1
k�0

eT�k � eT�k �
Xn0ÿ1
k�0

eT
k � �TzN;

subject to Eq. 1(a and b) the initial condition x0 � x̂j,
Eqs. 3(a±c) and (6), where the non-negative vectors �k,
�k, 
k, and zN are speci®ed by the following linear
inequalities

ÿ�k4Ruk4�k; ÿ�k4QCxk4�k;


k4QCAk
s xN4
k;ÿzN4 Sÿ1

ÿ �
�
xN4zN:

With an l1 criterion, we formulate (5) as the following
linear program

�N x̂j
ÿ � � min

xk;uk;�k;�k;
k;zN

X1
k�0
�k � �k �

Xn0ÿ1
k�0


k � �TzN;

subject to Eq. 1 (a and b), the initial condition x0 � ẑj,
Eqs. 3(a±c) and (6), where the non-negative scalars �k,
�k, and 
k and the vector zN are speci®ed by the fol-
lowing linear inequalities

ÿ�ke4Ruk4�ke; ÿ�ke4QCxk4�ke;

ÿ
ke4QCAk
s xN4
ke;

ÿzN4 Sÿ1
ÿ �

�
xN4zN:

The variable e is the vector of ones.

3. MPC with an l1 norm objective

Consider the regulation of the following non-mini-
mum phase system

y s� � � sÿ 3

3s2 � 4s� 2
u s� �;

sampled at frequency of 10 Hz with an initial state dis-
turbance of x0 � 1; 1� �T. A horizon length of N � 30
was chosen for both examples. For simplicity we ignore
inequality constraints, because they add little to the
theme of the discussion on qualitative performance. Fig.
2 shows the comparison of the closed-loop responses
between an l1 criterion and a quadratic criterion with
tuning parameters Q � 5 and R � 1. The simulation
indicates the l1 formulation forces the state to the origin
in ®nite time as opposed to the quadratic programming
formulation, where the state exponentially approaches
the origin. Further simulations indicate that the dead-
beat policy holds for all initial conditions. The ®nite
horizon problem is also equivalent to the in®nite hor-
izon problem, because the l1 formulation forces the state
to the origin in ®nite time. Forcing the state to the ori-
gin in ®nite time is appealing for servo regulation.
However, dead-beat control may yield poor closed-loop

286 C.V. Rao, J.B. Rawlings / Journal of Process Control 10 (2000) 283±289



performance in process control applications. The poor
performance becomes evident when state noise is added
to the simulation. Fig. 3 shows a comparison of closed-
loop responses when state noise is added. The deviation
from the target is less for the l1 formulation; at the same
time the dead-beat performance causes aggressive con-
trol action. In many situations this high-gain control is
undesirable.
In addition to yielding dead-beat performance, the l1

formulation results in idle control performance when
the input penalty R is large relative to Q. Fig. 4 shows
the comparison of the closed-loop responses between
the l1 criterion and the quadratic criterion with tuning
parameters Q � 1 and R � 5. The simulation indicates
that the optimal policy for the l1 formulation is no con-
trol action. For the given tuning, the idle policy holds
regardless of the initial conditions and the horizon
length. Although the qualitative performance, e.g. the
settling time, between the quadratic and l1 criterion is
not appreciably di�erent for the example, idle control
defeats the purpose of implementing a control system.
The reason for the similarity between the open-loop
response (idle control policy) and the closed-loop
response (quadratic criterion) is that the large input
penalty R relative to the output penalty Q paci®es the
controller and, therefore, does not place the closed-loop

poles of the system far from the open-loop poles. So,
unlike the dead-beat policy, with the addition of dis-
turbances, the qualitative performance of the idle
policy will be similar to the performance of the quad-
ratic formulation.
The two examples demonstrate that the l1 formulation

yields di�erent qualitative performances depending on
the selection of the tuning parameters. This dichotomy
is in direct contrast to the quadratic formulation, where
the qualitative control performance is similar regardless
of the tuning; i.e. the qualitative performance is always
exponential convergence. The di�erence between the
two formulations is analogous to the di�erence between
a positive de®nite quadratic program and a linear pro-
gram. Whereas the solution to the quadratic program
may reside in the interior of the feasible region, the
solution to a linear program always resides at an
extreme point of the feasible region.
We can speci®cally attribute the di�erences between

the l1 and quadratic formulation to the non-smoothness
of the objective function. We can interpret the input and
output stage costs as competing exact penalties, because
the objective function for the l1 criterion is a sum of
norms (an introductory explanation of exact penalties
may be found in Fletcher [8]). The purpose of exact
penalties is to recast the constrained optimization

Fig. 2. Comparison of input and output responses for Q � 5 and

R � 1.

Fig. 3. Comparison of input and output responses for Q � 5 and R �
1 with state noise.
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min
x

f x� � : g x� � � 0
� 	

as the equivalent unconstrained optimization

min
x

f x� � � l g x� �

 


p
:

If l > 0 is su�ciently large (greater than the dual norm
of the Lagrange multiplier associated with the con-
straint g x� � � 0), then the solutions to the two optimi-
zation are equivalent. Hence, we may view the terms

Ruk


 



1
as penalties for the constraint uk � 0 and the

terms Qyk


 



1
as penalties for the constraint yk � 0.

When the input penalty R is su�ciently large, the exact
penalty uk � 0 becomes a binding constraint. Likewise,
when the output penalty Q is su�ciently large, the exact
penalty yk � 0 becomes a binding constraint. In parti-
cular, the two competing penalties are between dead-
beat and idle control performance. We can also expect
the same qualitative behavior for the l1 formulation,
because the non-smoothness is present for any lp for-
mulation,

We demonstrate the e�ect of the non-smoothness of
the objective function geometrically with a simple scalar
example. Consider the following single stage optimal
control problem

min
u0

� � x1j j � r u0j j;

subject to the scalar system

x1 � ax0 � bu0:

Recognize that because both the state and input are
scalar, this example encompasses all lp norm formula-
tions. Fig. 5 shows the graph of � as a function of u0. It
is evident from the graph that if r > b, then the optimal
solution is u0 � 0, because the slope of the middle sec-
tion is negative. Likewise, if r < b, the optimal solution

is u0 � ÿ ax0
b
, which yields dead-beat control, because

the slope of the middle section is positive. If r � b, the
optimal solution is not unique. Both solutions are opti-
mal, including all solutions in between: either 04u04ÿ
ax0=b or ÿax0=b4u040. If we consider the quadratic
criterion

�0 � x21 � ru20

then the optimal solution is

u0 � ÿ ab

b2 � r
x0:

In contrast to the l1 formulation, the quadratic control
is neither dead-beat nor idle for r > 0.
At this stage we are confronted with the question as

to whether the lp formulation is preferable to a quad-
ratic formulation. In addition to the numerical advan-
tages o�ered by linear programs, for many applications
the actual control speci®cations translate more naturally
into an lp criterion than a quadratic criterion. However,
the sensitivity of closed-loop behavior for the l1 for-
mulation is disconcerting, because the tuning parameters
must be chosen judiciously to exclude undesirable

Fig. 4. Comparison of input and output responses for Q � 5 and R � 5

Fig. 5. Graph and slopes of the cost function �.
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performance. Not only does one have to be wary of the
implications of dead-beat or idle performance, non-
uniqueness of the control presents potential problems,
because erratic closed-loop behavior may result. We
expect that additional measures such as input velocity
penalties would help counteract the aggressive control
behavior. However, the additional measures would only
compensate for and not alter the fundamental behavior
of lp formulations.

4. Conclusion

The main contribution of this paper has been to
illustrate some of the consequences of using MPC with
an lp criterion. Our motivation for studying the lp cri-
terion was that for both l1 and l1 criterion the resulting
optimization can be formulated as a linear program.
Linear programming formulations are desirable,
because they are computationally less demanding than
the standard quadratic programming formulations.
Furthermore, theoretical issues such as stability are
a straightforward extension of the results available for
the quadratic criterion. However, performance issues
raise questions concerning the suitability of the lp cri-
terion for MPC. Although possessing desirable theore-
tical and numerical properties, lp formulations su�er
many practical drawbacks. The main consequence of
the lp criterion is that it may yield either dead-beat or
idle control performance. Both of these types of per-
formance may be unsuitable for process control appli-
cation.
While our arguments have been mostly qualitative, it

is evident that the culprit is the non-smoothness of the
objective function. The non-smoothness causes the stage
cost functions to act as competing exact penalties for
the constraints u � 0 and y � 0. For the scalar system,
the behavior is simple to understand. Extending these
results to higher dimension systems is more di�cult and
is currently unresolved.
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